Science

Regression analysis for predicting the elasticity of liquid crystal elastomers | Scientific Reports – Nature.com

  • Wermter, H. & Finkelmann, H. Liquid crystalline elastomers as artificial muscles. e-Polymers 1, 013. https://doi.org/10.1515/epoly.2001.1.1.111 (2001).

  • Buguin, A., Li, M.-H., Silberzan, P., Ladoux, B. & Keller, P. Micro-actuators: When artificial muscles made of nematic liquid crystal elastomers meet soft lithography. J. Am. Chem. Soc. 128, 1088–1089. https://doi.org/10.1021/ja0575070 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Li, M.-H. & Keller, P. Artificial muscles based on liquid crystal elastomers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364, 2763–2777. https://doi.org/10.1098/rsta.2006.1853 (2006).

    Article  ADS  CAS  Google Scholar 

  • Ohm, C., Brehmer, M. & Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366–3387. https://doi.org/10.1002/adma.200904059 (2010).

    Article  CAS  PubMed  Google Scholar 

  • White, T. J. & Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098. https://doi.org/10.1038/nmat4433 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kularatne, R. S., Kim, H., Boothby, J. M. & Ware, T. H. Liquid crystal elastomer actuators: Synthesis, alignment, and applications. J. Polym. Sci. B Polym. Phys. 55, 395–411. https://doi.org/10.1002/polb.24287 (2017).

    Article  ADS  CAS  Google Scholar 

  • Guin, T. et al. Layered liquid crystal elastomer actuators. Nat. Commun. 9, 2531. https://doi.org/10.1038/s41467-018-04911-4 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Urayama, K., Honda, S. & Takigawa, T. Deformation coupled to director rotation in swollen nematic elastomers under electric fields. Macromolecules 39, 1943–1949. https://doi.org/10.1021/ma052762q (2006).

    Article  ADS  CAS  Google Scholar 

  • Winkler, M., Kaiser, A., Krause, S., Finkelmann, H. & Schmidt, A. M. Liquid crystal elastomers with magnetic actuation. Macromol. Symp. 291–292, 186–192. https://doi.org/10.1002/masy.201050522 (2010).

    Article  CAS  Google Scholar 

  • Okamoto, T., Urayama, K. & Takigawa, T. Large electromechanical effect of isotropic-genesis polydomain nematic elastomers. Soft Matter 7, 10585–10589. https://doi.org/10.1039/C1SM06372C (2011).

    Article  ADS  CAS  Google Scholar 

  • Corbett, D. & Warner, M. Changing liquid crystal elastomer ordering with light—a route to opto-mechanically responsive materials. Liq. Cryst. 36, 1263–1280. https://doi.org/10.1080/02678290903062994 (2009).

    Article  CAS  Google Scholar 

  • Kato, T. & Tanabe, K. Electro- and photoactive molecular assemblies of liquid crystals and physical gels. Chem. Lett. 38, 634–639. https://doi.org/10.1246/cl.2009.634 (2009).

    Article  CAS  Google Scholar 

  • White, T. J., Serak, S. V., Tabiryan, N. V., Vaia, R. A. & Bunning, T. J. Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers. J. Mater. Chem. 19, 1080–1085. https://doi.org/10.1039/B818457G (2009).

    Article  CAS  Google Scholar 

  • Lee, K. M. et al. Photodriven, flexural-torsional oscillation of glassy azobenzene liquid crystal polymer networks. Adv. Funct. Mater. 21, 2913–2918. https://doi.org/10.1002/adfm.201100333 (2011).

    Article  CAS  Google Scholar 

  • Gelebart, A. H., Mulder, D. J., Vantomme, G., Schenning, A. P. H. J. & Broer, D. J. A rewritable, reprogrammable, dual light-responsive polymer actuator. Angew. Chem. (Int. Ed. Engl.) 56, 13436–13439. https://doi.org/10.1002/anie.201706793 (2017).

    Article  CAS  Google Scholar 

  • White, T. J. Photomechanical effects in liquid crystalline polymer networks and elastomers. J. Polym. Sci. B Polym. Phys. 56, 695–705. https://doi.org/10.1002/polb.24576 (2018).

    Article  ADS  CAS  Google Scholar 

  • Bispo, M., Guillon, D., Donnio, B. & Finkelmann, H. Main-chain liquid crystalline elastomers: Monomer and cross-linker molecular control of the thermotropic and elastic properties. Macromolecules 41, 3098–3108. https://doi.org/10.1021/ma7026929 (2008).

    Article  ADS  CAS  Google Scholar 

  • Ohm, C., Haberkorn, N., Theato, P. & Zentel, R. Template-based fabrication of nanometer-scaled actuators from liquid-crystalline elastomers. Small 7, 194–198. https://doi.org/10.1002/smll.201001315 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Fleischmann, E.-K., Ohm, C., Serra, C. & Zentel, R. Preparation of soft microactuators in a continuous flow synthesis using a liquid-crystalline polymer crosslinker. Macromol. Chem. Phys. 213, 1871–1878. https://doi.org/10.1002/macp.201200276 (2012).

    Article  CAS  Google Scholar 

  • Shenoy, D. K., Laurence Thomsen, D. III., Srinivasan, A., Keller, P. & Ratna, B. R. Carbon coated liquid crystal elastomer film for artificial muscle applications. Sensors Actuators A Phys. 96, 184–188. https://doi.org/10.1016/S0924-4247(01)00793-2 (2002).

    Article  CAS  Google Scholar 

  • Thomsen, D. L. et al. Liquid crystal elastomers with mechanical properties of a muscle. Macromolecules 34, 5868–5875. https://doi.org/10.1021/ma001639q (2001).

    Article  ADS  CAS  Google Scholar 

  • Urayama, K., Kohmon, E., Kojima, M. & Takigawa, T. Polydomain–monodomain transition of randomly disordered nematic elastomers with different cross-linking histories. Macromolecules 42, 4084–4089. https://doi.org/10.1021/ma9004692 (2009).

    Article  ADS  CAS  Google Scholar 

  • Burke, K. A. & Mather, P. T. Soft shape memory in main-chain liquid crystalline elastomers. J. Mater. Chem. 20, 3449–3457. https://doi.org/10.1039/B924050K (2010).

    Article  CAS  Google Scholar 

  • Tsuchitani, A., Ashida, H. & Urayama, K. Pronounced effects of cross-linker geometries on the orientation coupling between dangling mesogens and network backbones in side-chain type liquid crystal elastomers. Polymer 61, 29–35. https://doi.org/10.1016/j.polymer.2015.01.069 (2015).

    Article  CAS  Google Scholar 

  • Rešetič, A. et al. Stress-strain and thermomechanical characterization of nematic to smectic a transition in a strongly-crosslinked bimesogenic liquid crystal elastomer. Polymer 158, 96–102. https://doi.org/10.1016/j.polymer.2018.10.049 (2018).

    Article  CAS  Google Scholar 

  • Herbert, K. M. et al. Synthesis and alignment of liquid crystalline elastomers. Nat. Rev. Mater. 7, 23–38 (2022).

    Article  ADS  CAS  Google Scholar 

  • Yakacki, C. et al. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol-acrylate reaction. RSC Adv. 5, 18997–19001 (2015).

    Article  ADS  CAS  Google Scholar 

  • Brannum, M. T. et al. Deformation and elastic recovery of acrylate-based liquid crystalline elastomers. Macromolecules 52, 8248–8255. https://doi.org/10.1021/acs.macromol.9b01092 (2019).

    Article  ADS  CAS  Google Scholar 

  • Skačej, G. & Zannoni, C. Molecular simulations shed light on supersoft elasticity in polydomain liquid crystal elastomers. Macromolecules 47, 8824–8832. https://doi.org/10.1021/ma501836j (2014).

    Article  ADS  CAS  Google Scholar 

  • Whitmer, J. K., Roberts, T. F., Shekhar, R., Abbott, N. L. & de Pablo, J. J. Modeling the polydomain-monodomain transition of liquid crystal elastomers. Phys. Rev. E 87, 020502. https://doi.org/10.1103/PhysRevE.87.020502 (2013).

    Article  ADS  CAS  Google Scholar 

  • Tagashira, K., Takahashi, K., Fukuda, J. & Aoyagi, T. Development of coarse-grained liquid-crystal polymer model with efficient electrostatic interaction: Toward molecular dynamics simulations of electroactive materials. Materialshttps://doi.org/10.3390/ma11010083 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Doi, H., Takahashi, K. Z., Tagashira, K., Fukuda, J.-I. & Aoyagi, T. Machine learning-aided analysis for complex local structure of liquid crystal polymers. Sci. Rep. 9, 16370. https://doi.org/10.1038/s41598-019-51238-1 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, K. Z., Aoyagi, T. & Fukuda, J.-I. Multistep nucleation of anisotropic molecules. Nat. Commun. 12, 5278 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasuoka, H., Takahashi, K. Z., Fukuda, J.-I. & Aoyagi, T. Molecular architecture dependence of mesogen rotation during uniaxial elongation of liquid crystal elastomers. Polymer 229, 123970 (2021).

    Article  CAS  Google Scholar 

  • Yasuoka, H., Takahashi, K. Z. & Aoyagi, T. Trade-off effect between the stress and strain range in the soft elasticity of liquid crystalline elastomers. Polym. J. 54, 1017–1027 (2022).

    Article  CAS  Google Scholar 

  • Takahashi, K. Z. Molecular cluster analysis using local order parameters selected by machine learning. Phys. Chem. Chem. Phys. https://doi.org/10.1039/D2CP03696G(in press).

  • Kularatne, R. S., Kim, H., Boothby, J. M. & Ware, T. H. Liquid crystal elastomer actuators: Synthesis, alignment, and applications. J. Polym. Sci. B Polym. Phys. 55, 395–411 (2017).

    Article  ADS  CAS  Google Scholar 

  • Cercignani, C. The Boltzmann equation. In The Boltzmann Equation and Its Applications, 40–103 (Springer, 1988).

  • Einstein, A. Über die von der molekularkinetischen theorie der wärme geforderte bewegung von in ruhenden flüssigkeiten suspendierten teilchen [adp 17, 549 (1905)]. Ann. Phys. 14, 182–193 (2005).

    Article  Google Scholar 

  • Hammett, L. P. Some relations between reaction rates and equilibrium constants. Chem. Rev. 17, 125–136 (1935).

    Article  CAS  Google Scholar 

  • Rogers, D. & Hopfinger, A. J. Application of genetic function approximation to quantitative structure–activity relationships and quantitative structure-property relationships. J. Chem. Inf. Comput. Sci. 34, 854–866 (1994).

    Article  CAS  Google Scholar 

  • Héberger, K. Quantitative structure–(chromatographic) retention relationships. J. Chromatogr. A 1158, 273–305 (2007).

    Article  PubMed  Google Scholar 

  • Katritzky, A. R. et al. Quantitative correlation of physical and chemical properties with chemical structure: Utility for prediction. Chem. Rev. 110, 5714–5789 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Le, T., Epa, V. C., Burden, F. R. & Winkler, D. A. Quantitative structure–property relationship modeling of diverse materials properties. Chem. Rev. 112, 2889–2919 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Jiao, Z., Escobar-Hernandez, H. U., Parker, T. & Wang, Q. Review of recent developments of quantitative structure–property relationship models on fire and explosion-related properties. Process Saf. Environ. Prot. 129, 280–290 (2019).

    Article  CAS  Google Scholar 

  • Williams, M. L., Landel, R. F. & Ferry, J. D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955).

    Article  CAS  Google Scholar 

  • Doi, M., Edwards, S. F. & Edwards, S. F. The Theory of Polymer Dynamics Vol. 73 (Oxford University Press, 1988).

    Google Scholar 

  • Wallin, K. The master curve method: A new concept for brittle fracture. Int. J. Mater. Prod. Technol. 14, 342–354 (1999).

    Article  CAS  Google Scholar 

  • Flory, P. J. Principles of Polymer Chemistry (Cornell University Press, 1953).

    Google Scholar 

  • Stevens, M. P. Polymer Chemistry Vol. 2 (Oxford University Press, 1990).

    Google Scholar 

  • Hiemenz, P. C. & Lodge, T. P. Polymer Chemistry (CRC Press, 2007).

    Book  Google Scholar 

  • Stanton, D. T. & Jurs, P. C. Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure-property relationship studies. Anal. Chem. 62, 2323–2329 (1990).

    Article  CAS  Google Scholar 

  • Cruciani, G., Crivori, P., Carrupt, P.-A. & Testa, B. Molecular fields in quantitative structure–permeation relationships: The Volsurf approach. J. Mol. Struct. THEOCHEM 503, 17–30 (2000).

    Article  CAS  Google Scholar 

  • Couling, D. J., Bernot, R. J., Docherty, K. M., Dixon, J. K. & Maginn, E. J. Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure–property relationship modeling. Green Chem. 8, 82–90 (2006).

    Article  CAS  Google Scholar 

  • Liu, W., Lu, H., Cao, C., Jiao, Y. & Chen, G. An improved quantitative structure property relationship model for predicting thermal conductivity of liquid aliphatic alcohols. J. Chem. Eng. Data 63, 4735–4740 (2018).

    CAS  Google Scholar 

  • Huan, T. D. et al. A polymer dataset for accelerated property prediction and design. Sci. Data 3, 1–10 (2016).

    Article  Google Scholar 

  • Audus, D. J. & de Pablo, J. J. Polymer informatics: Opportunities and challenges. ACS Macro Lett. 6, 1078–1082 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine learning in materials informatics: Recent applications and prospects. npj Comput. Mater. 3, 1–13 (2017).

    Article  Google Scholar 

  • Mannodi-Kanakkithodi, A. et al. Scoping the polymer genome: A roadmap for rational polymer dielectrics design and beyond. Mater. Today 21, 785–796 (2018).

    Article  CAS  Google Scholar 

  • Jackson, N. E., Webb, M. A. & de Pablo, J. J. Recent advances in machine learning towards multiscale soft materials design. Curr. Opin. Chem. Eng. 23, 106–114 (2019).

    Article  Google Scholar 

  • Aoyagi, T. Deep learning model for predicting phase diagrams of block copolymers. Comput. Mater. Sci. 188, 110224 (2021).

    Article  CAS  Google Scholar 

  • Morita, H., Miyamoto, A. & Kotani, M. Recoverably and destructively deformed domain structures in elongation process of thermoplastic elastomer analyzed by graph theory. Polymer 188, 122098 (2020).

    Article  CAS  Google Scholar 

  • Aoyagi, T. High-throughput prediction of stress–strain curves of thermoplastic elastomer model block copolymers by combining hierarchical simulation and deep learning. MRS Adv. 6, 32–36 (2021).

    Article  CAS  Google Scholar 

  • Aoyagi, T. Optimization of the elastic properties of block copolymers using coarse-grained simulation and an artificial neural network. Comput. Mater. Sci. 207, 111286 (2022).

    Article  CAS  Google Scholar 

  • Berardi, R., Zannoni, C., Lintuvuori, J. S. & Wilson, M. R. A soft-core Gay–Berne model for the simulation of liquid crystals by Hamiltonian replica exchange. J. Chem. Phys. 131, 174107 (2009).

    Article  ADS  PubMed  Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).

    Article  MATH  Google Scholar 

  • Pedregosa, F. et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet  MATH  Google Scholar 

  • Wu, Z. et al. Moleculenet: A benchmark for molecular machine learning. Chem. Sci. 9, 513–530 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Ware, T. H., McConney, M. E., Wie, J. J., Tondiglia, V. P. & White, T. J. Voxelated liquid crystal elastomers. Science 347, 982–984. https://doi.org/10.1126/science.1261019 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  • Guo, Y., Zhang, J., Hu, W., Khan, M. T. A. & Sitti, M. Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries. Nat. Commun. 12, 1–9 (2021).

    Article  Google Scholar 

  • Zhang, J. et al. Liquid crystal elastomer-based magnetic composite films for reconfigurable shape-morphing soft miniature machines. Adv. Mater. 33, 2006191 (2021).

    Article  CAS  Google Scholar 

  • Xiao, Y.-Y., Jiang, Z.-C., Hou, J.-B. & Zhao, Y. Desynchronized liquid crystalline network actuators with deformation reversal capability. Nat. Commun. 12, 1–10 (2021).

    Article  Google Scholar 

  • Aoyagi, T. et al. A general-purpose coarse-grained molecular dynamics program. Comput. Phys. Commun. 145, 267–279. https://doi.org/10.1016/S0010-4655(02)00271-0 (2002).

    Article  ADS  CAS  MATH  Google Scholar